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Abstract Discrete-time randomwalks and their extensions are common tools for ana-
lyzing animal movement data. In these analyses, resolution of temporal discretization
is a critical feature. Ideally, a model bothmirrors the relevant temporal scale of the bio-
logical process of interest and matches the data sampling rate. Challenges arise when
resolution of data is too coarse due to technological constraints, or when we wish to
extrapolate results or compare results obtained from data with different resolutions.
Drawing loosely on the concept of robustness in statistics, we propose a rigorous
mathematical framework for studying movement models’ robustness against changes
in temporal resolution. In this framework, we define varying levels of robustness
as formal model properties, focusing on random walk models with spatially-explicit
component. With the new framework, we can investigate whether models can validly
be applied to data across varying temporal resolutions and how we can account for
these different resolutions in statistical inference results. We apply the new frame-
work to movement-based resource selection models, demonstrating both analytical
and numerical calculations, as well as a Monte Carlo simulation approach. While
exact robustness is rare, the concept of approximate robustness provides a promising
new direction for analyzing movement models.
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1 Introduction

Major advances in tracking technology during the last decades have made large
datasets of animalmovement available to ecologists, and analyses of data have become
widespread in ecology. These analyses have shed light on mechanisms that underly
fundamental processes such as migration (Robinson et al. 2009; Costa et al. 2012),
navigation (Tsoar et al. 2011; Benhamou et al. 2011), or home range behaviour and
territoriality (Borger et al. 2008; Potts and Lewis 2014; Giuggioli and Kenkre 2014).
They have helped to identify conservation goals by revealing habitat preferences and
critical environmental features for populations (Sawyer et al. 2009; Colchero et al.
2010; Ito et al. 2013; Masden et al. 2012), as well as the role of important mutualistic
interactions between mobile animals and immobile plants (Côrtes and Uriarte 2013;
Mueller et al. 2014). These are only few of the many facets of movement ecology.

Mathematical and statistical models provide a framework for studying movement
(Schick et al. 2008; Smouse et al. 2010; Langrock et al. 2013).When linkingmodels to
data, we can estimate model parameters and identify best-fittingmodels, thus inferring
unknownquantities ormechanisms inmovement behaviour.Althoughmovement itself
is a continuous process, many individual-based movement models treat time as a
discrete variable, viewing movement as a series of locations in space, or equivalently
as a series of steps (Turchin 1998; McClintock et al. 2014). This may largely be
ascribed to data being available in this format. Discrete-time models may thus be an
intuitive first choice to describe a sampled movement path. However, there may be
more reasons to use discrete-timemodels. The continuousmovement path of an animal
may consist of various behaviours at different scales (Johnson et al. 2002; Benhamou
2013). Using a discrete-time model at the scale of interest allows us to focus on the
behavioural mechanisms at that scale, while, for example, combining other unknown
processes as stochastic effects. Also, the choice of time formulation in a movement
model can have side effects that impact inference results. For example, McClintock
et al. (2014) demonstrated that using a continuous-timeOrnstein–Uhlenbeckprocess in
a hierarchical model for identifying behavioural states led to difficulties discriminating
between states, due to an inherent correlation between the variables step length and
bearing in the Ornstein–Uhlenbeck process.

When linking discrete-timemodels to data, the temporal resolution of the discretiza-
tion is a critical feature that must be chosen with care. Different time scales may come
into play and need to be consolidated. On the one hand, a time scale is given by the
biological process of interest. For example, we may be interested in inferring behav-
ioural mechanisms of a movement process and thus need to consider the time scale at
which these mechanisms are relevant. The discretization of a model should represent
this scale appropriately. On the other hand, a different time scale may be given by the
data collection rate. In practice, the sampling rate of data is subject to technological
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constraints. One of the major limitations of electronic tagging devices such as Argos
or GPS tags is battery life, imposing a tradeoff between measurement rate and total
deployment time (Ryan et al. 2004; Breed et al. 2011). Also, to avoid a large noise to
signal ratio, the time interval should be chosen so that measurement error relative to
distance travelled during a time interval is small (Ryan et al. 2004). For slow moving
animals and depending on the accuracy of the tagging device, a minimum time interval
of an hour may be necessary (Jerde and Visscher 2005). Therefore, the resolution of
the data may not always match the time scale of the behavioural process of interest.
In this case, it becomes a challenge for a model to overcome the conflict.

A related problem is that sampling rate can affect data analysis results (Codling
and Hill 2005; Rowcliffe et al. 2012; Postlethwaite and Dennis 2013). A common
measure calculated from raw movement data is the total distance travelled, which
can provide useful information about an animal’s energetic expenditures. It is well
documented that this quantity is highly influenced by the sampling rate of the data
(Ryan et al. 2004; Mills et al. 2006; Tanferna et al. 2012; Rowcliffe et al. 2012). A
range of studies demonstrated that other fundamental movement characteristics vary
with data sampling frequency as well, for example path sinuosity and apparent speed
(Codling and Hill 2005), movement rate and turning angle (Postlethwaite and Dennis
2013), and estimates of territory size (Mills et al. 2006). One of the main problems
underlying these effects is information loss when subsampling a movement path. This
also impairs our capacity to correctly estimate behavioural states through hierarchical
modelling approaches that have become widespread in movement analyses (Breed
et al. 2011; Rowcliffe et al. 2012). These findings demonstrate that great care is needed
when extrapolating movement analysis results beyond the temporal scale of a study.
Comparisons of results may not be appropriate if the temporal resolution of the data
varies too much, but it is unclear what constitutes ‘too much’.

Despite the evidence of the extent of the problem, little is known about how to solve
it. Previous approaches have been mainly empirical, using very fine scale data or syn-
thetic data from simulations, which are subsampled at various resolutions. Movement
characteristics calculated at these varying sampling rates are then compared to the val-
ues based on the full data, which represent the ‘true’ values. Some studies have fitted
functions to the relationships of movement characteristics and sampling rate (Pépin
et al. 2004; Codling and Hill 2005; Mills et al. 2006). These empirically obtained
functions may be used to correct movement characteristics for sampling rate. While
correction factors derived from movement data remain situation-specific and cannot
easily be applied across species (Ryan et al. 2004; Rowcliffe et al. 2012), we can
obtain more general results by analyzing the effects of sampling rate at the level of the
model (Codling and Hill 2005; Rosser et al. 2013). Often, important characteristics
of movement can be well captured by models, and therefore analyzing the properties
of models can provide more general insights. However, only few such studies exist.
An approach to circumvent the problem of scale-dependent statistical inference has
been taken by Fleming et al. (2014), who use the semivariance function of a stochastic
movement process to identify multiple movement modes acting at different temporal
scales. The method takes into account all possible time lags between observations.
However, there are limitations as to the movement processes that can be included in
this analysis (Fleming et al. 2014).
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Here, we present a rigorous framework for studying how movement models react
to changes in sampling rate, and we use this framework to analyze a class of models
based on random walks. With our analysis, we seek to understand whether, and how,
models can help to compensate mismatching temporal scales between different data
sets or between data and behavioural process of interest. The framework is based on the
movement model robustness presented in Schlägel and Lewis (2016), where we ana-
lyzed classic randomwalks. Here we extend this to spatially-explicit randomwalks, as
for example used in resource-selection studies (Forester et al. 2009; Potts et al. 2014).
We investigate whether there are models that can validly be applied to data with differ-
ent temporal resolutions and how we can account for the differences in resolutions in
our interpretation of statistical inference results. In particular, we are interested in how
model parameters, and their estimates, change as we decrease the temporal resolution.
While estimates may change due to a shift in behavioural scale, which we always need
to be aware of, we are interested in the changes that arise from the method, that is the
model. Our framework is related to the statistical concept of robustness, which aims
at safeguarding statistical procedures against violations of model assumptions (Ham-
pel 1986; Huber and Ronchetti 2009). Often, such violations refer to deviations from
assumed probability distributions (e.g. Normal errors), which may result in outliers,
misspecified relationships between response and explanatory variables in regression
analyses, or violations of the common independence assumption. In this paper, we
define robustness of movement models against changes in temporal discretization.
In our framework, we treat robustness as a formal property of a model, namely the
movement model. If a model has this property, it can be applied to data with varying
resolutions. Additionally, while model parameters do not stay the same, they change
systematically and can be translated between resolutions.

As a cautionary note, we emphasize that the purpose of our paper is to highlight
the sensitivity of movement data analyses based on discrete-time models to temporal
resolution and to explore potential remedies. There will always be limitations as to
the mismatch in resolution between process and data that a model can handle. As data
becomes coarser behavioural detail is lost, and a model that is suitable at a fine scale,
e.g. the scale of area-restricted search, is most likely unsuitable at a larger scale, e.g.
the scale of patch selection (Benhamou 2013). Our analysis is directed towards a better
and more precise understanding of the impact of temporal discretization on movement
analyses, in particular when it is still reasonable to assume that the data’s resolution
is still within the scale of interest (e.g. 15-min data vs. 4h data for a large mammal).
In our study of simple random walks, we found that movement model robustness is
a very strong condition (Schlägel and Lewis 2016). Therefore, we here extend our
framework to include approximate robustness, which slightly relaxes the assumptions
of exact robustness.

Our paper is outlined as follows. In Sect. 2, we define what wemean by amovement
model to be robust against changes in temporal resolution. We provide three different
definitions, varying in their strength of conditions. In Sect. 3, we present different
approaches how the definitions can be used to analyze robustness of movement mod-
els. Depending onmodels’ complexity and preexisting information, we can use formal
analytical methods, numerical calculations, as well as Monte Carlo and simulation
approaches. We use these approaches to examine robustness of spatially-explicit ran-
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Fig. 1 The second sub-model consists of every second location. The transition densities of the sub-model,
which we refer to as 2-step densities, are the marginals over the two intermediate one-step densities of the
original model

domwalks and resource-selectionmodels, andwe summarize our findings in Sect. 4. In
Sect. 5, we discuss the relevance of our robustness framework for statistical inference
and also draw specific conclusions for spatially-explicit resource-selection models.

2 Robustness of Markovian movement models

We consider movement models that are discrete-time Markov processes of the form
(X t , t ∈ T ), where X t ∈ R

2 is an individual’s location and T = {0, τ, 2τ, . . . } is a
set of regularly spaced times. This means that we assume that the time interval τ > 0
between two successive location measurements is fixed. Such data often arise from
terrestrial animals fitted with GPS devices (Frair et al. 2010). The time interval τ of
the model is usually specified by the resolution of the data. We denote the one-step
transition density for the probability of moving from location y to x between times
t − τ and t by pt−τ,t (x| y, θ), where θ ∈ Θ is a vector of model parameters. This
notation highlights that the transition density can be time-heterogeneous.

We consider sub-models that consist of every nth location of the original model
for n ∈ N. The transition density of the nth sub-model for the probability of moving
from location y to x between times t − nτ and t is denoted by pt−nτ,t (x| y, θ);
compare Fig. 1. A priori, the function pt−nτ,t can have an entirely different form
than pt−τ,t and may correspond to a different probability distribution. However, via
the Chapman–Kolmogorov equation, the n-step transition density can be written as a
marginal density,

pt−nτ,t (xt |xt−nτ , θ)

=
∫
R2×···×R2

pjoint(xt , xt−τ , . . . , xt−(n−1)τ |xt−nτ , θ) dxt−τ . . . dxt−(n−1)τ ,

(1)

where we marginalize over all intermediate locations visited between times t − nτ

and t . For simplicity, we use the general subscript ‘joint’ to denote any joint density
of multiple locations. From the notation of the locations it is clear which joint density
is meant. The Markov property of the model allows us to stepwise split up the joint
density as follows

pjoint(xt , xt−τ , . . . , xt−(n−1)τ |xt−nτ , θ)

= pt−τ,t (xt |xt−τ , θ) pjoint(xt−τ , . . . , xt−(n−1)τ |xt−nτ , θ). (2)
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We can continue this until we obtain

pt−nτ,t (xt |xt−nτ , θ)

=
∫
R2×···×R2

n−1∏
k=1

pt−kτ,t−(k−1)τ (xt−(k−1)τ |xt−kτ , θ) dxt−τ . . . dxt−(n−1)τ .

(3)

Therefore, we can use the one-step densities to calculate the n-step density; compare
Fig. 1. For statistical inference, and thus for our robustness concept, themodel parame-
ter vector θ plays a crucial role. Although the n-step density may belong to a different
distribution than the one-step density, Eq. (3) justifies that we use the same parameter
θ in the notation of the n-step density as in the one-step density.

We define robustness in terms of the one-step and n-step densities of a model.

Definition 1 (Robustness of degree n) Let n ∈ N be finite. A movement model of the
above type is robust of degree n if there exists an injective function gn : Θ → Θ such
that

pt−nτ,t (x| y, θ) = pt−τ,t (x| y, gn(θ)) for all t ∈ T and x, y ∈ R
2. (4)

This definition requires that the n-step densities are of the same functional form as
the one-step transitions, where parameters of the model are appropriately transformed
via the function gn . This means that if a model is robust, the nth sub-model is in
fact the same as the original model but with systematically adjusted parameters. The
parameter transformation gn allows us to extrapolate the original parameter θ to the
coarser temporal discretization of the nth sub-model. Additionally, we can use the nth
sub-model to infer the parameter θ of the original model, because we can invert gn(θ).
Note, however, that this rests on the assumption that the original model defines the
process of interest. If, instead we start at the coarser resolution, we would also need
surjectivity of the function gn to conclude the existence of the finer model.

Robustness of degree n has important implications. Given a behavioural process
of interest, described by a robust model with parameter θ , we can apply the model
not only to data with matching temporal resolution τ but also to coarser data with
resolution nτ (e.g. double time interval for n = 2). The parameter estimate ψ that
we obtain from the coarser data is in fact an estimate of gn(θ). From this, we can
infer the value of θ via θ = g−1

n (ψ). Additionally, robustness allows us to compare
studies pertaining to the same behavioural process but using data sets with different
resolutions. If θ is the estimate based on the finer data, it can be extrapolated to the
coarser scale via the parameter transformation gn(θ), for all degrees n for which the
model is robust.

Robustness as in Definition 1 is a strong condition that we do not expect to hold but
in few special cases of the density pt−τ,t (x| y, θ). However, Eq. (4) may hold up to a
function v(x, y), where v is a bounded function that could also depend on n or τ . For
practical applications, such approximate or asymptotic robustness may be sufficient.
Therefore, we provide two additional definitions.
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Definition 2 (Asymptotic robustness of degree n) Let n ∈ N be finite. A movement
model of the above type is said to be asymptotically robust of degree n if there exists
an injective function gn : Θ → Θ and a function v : R2 ×R

2 ×R
+ → R

+ with the
property v(x, y; τ) − 1 = O(τ ) on R

2 × R
2 × R

+, such that

pt−nτ,t (x| y, θ) = pt−τ,t (x| y, gn(θ)) v(x, y; τ) for all t ∈ T and x, y ∈ R
2.

(5)

Here, O denotes the Landau symbol for the order of a function. If a model is asymp-
totically robust, the n-step densities are not exactly the same as the one-step densities,
as was required in Definition 1. However, the discrepancy between the densities is
bounded by a function that is proportional to τ . More precisely, for an asymptotically
robust model we have

1 − Cτ ≤ pt−nτ,t (x| y, θ)

pt−τ,t (x| y, gn(θ))
≤ 1 + Cτ (6)

for all x, y and θ , for some constant C > 0. Therefore, if the time interval τ of
the model is sufficiently small, the n-step density will closely resemble the one-step
density with appropriately adjusted parameters. Asymptotic robustness of degree n
implies that robustness of degree n is achieved as τ → 0, that is when the time
interval τ approaches zero.

In applications, the time interval τ may not be chosen sufficiently small for Defini-
tion 2 to be useful. Therefore, we give a variation of Definition 2, in which the function
v does not depend on τ .

Definition 3 (Approximate robustness of magnitude δ and degree n) Let n ∈ N be
finite. A movement model of the above type is said to be approximately robust of
magnitude δ and degree n if there exists an injective function gn : Θ → Θ and a
function v : R2 × R

2 → R
+ with the property 0 < 1 − δ ≤ v(x, y) ≤ 1 + δ for all

x, y ∈ R
2, for a δ > 0, such that

pt−nτ,t (x| y, θ) = pt−τ,t (x| y, gn(θ)) v(x, y) for all t ∈ T and x, y ∈ R
2. (7)

Analogously to Eq. (6), condition (7) can be written as

1 − δ ≤ pt−nτ,t (x| y, θ)

pt−τ,t (x| y, gn(θ))
≤ 1 + δ. (8)

In fact, we may consider two different types of magnitudes. Setting

v(x, y) := pt−nτ,t (x| y, θ)

pt−τ,t (x| y, gn(θ))
, (9)

this function depends a priori on the parameters, that is we have v(x, y; θ), and the
magnitude is δθ . If maxθ δθ exists, then this is the overall magnitude for themodel with
all possible parameter values. The magnitude determines how close n-step densities
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are to the parameter-adjusted one-step densities. If δ is small, then the correction
function v is close to one everywhere, and thus the n-step density has similar values
as the one-step density over its entire domain.

Asymptotic and approximate robustness have similar implications for inference as
robustness, but only approximately. The quality of the approximation depends on τ

or the magnitude δ. Suppose we wish to estimate parameters of a behavioural process
that we formulate in a model. Suppose we consider the time interval τ as suitable for
the process. If the model is robust of degree n, we can use data not only at the matching
scale but also at a coarser scale. For example, if the model is robust of degree 2, we can
use data obtained at time interval 2τ . Because the model is also valid for the coarser
scale, we can translate parameter estimates between the scales via the function gn . If
a model is asymptotically or approximately robust, the model is not exactly but still
approximately valid for the coarser scale. To see this, consider the likelihood function

L1 (θ |{x0, xτ , x2τ , . . . , }) =
∏

t∈{τ,2τ,... }
pt−τ,t (xt |xt−τ , θ). (10)

If a model is robust of degree n, the likelihood for data at time interval nτ is

Ln(θ |{x0, xnτ , x(n+1)τ , . . . , }) =
∏

t∈{nτ,(n+1)τ,... }
pt−nτ,t (xt |xt−nτ , θ)

= L1
(
gn(θ)|{x0, xnτ , x(n+1)τ , . . . , }

)
.

(11)

If a model is asymptotically robust, we have instead

L1(gn(θ)) · (1 − Cτ + O(τ 2)) ≤ Ln(θ) ≤ L1(gn(θ)) · (1 + Cτ + O(τ 2)), (12)

omitting the notation of the data, which is the same as in Eq. (11). Analogously, for
approximate robustness we have

L1(gn(θ)) · (1 − δ + O(δ2)) ≤ Ln(θ) ≤ L1(gn(θ)) · (1 + Cδ + O(δ2)). (13)

Therefore, if a model is asymptotically or approximately robust of degree n, we
may loosely write Ln(θ) ≈ L1(gn(θ)), that is the likelihood functions based on data
at time interval τ and on data at interval nτ are approximately the same. Thus, if data
at time interval τ is not available, we can analyze data at time interval nτ instead,
using the likelihood L1 of the original model. Parameter estimates obtained in this
way can be translated to the scale τ by using the inverse parameter transformation
g−1
n . Such results from statistical inference based on L1 may be close to results based

on the correct Ln , which may be difficult to compute. How close results are depends
on the quality of the approximations in Definitions 2 and 3 via τ or δ. For example,
if a model is approximately robust with a very small magnitude δ, the likelihood L1
will describe data at time interval nτ almost as well as Ln .
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3 Analyzing spatially-explicit random walks

We used the robustness definitions to analyze spatially-explicit random walk models.
These models merge general movement tendencies of an individual with decisions
based on specific characteristics of locations, such as environmental features and
available resources. We investigated how the models react when applied to data with
increasingly coarser temporal resolution.

Our robustness definitions have two key features. First, the one-step transition
densities of themodel and the n-step densities of the sub-models need to have the same
form. Second, model parameters, which are parameters of the densities, need to be
transformedby aknown function gn .Wecan assumedifferent approaches to investigate
robustness properties of a model, depending on whether we have a candidate for
the parameter transformation gn or not. If prior knowledge allows us to investigate
robustness for a given or hypothesized parameter transformation, we can calculate
and compare the n-step density pt−nτ,t (x| y, θ) and the parameter-adjusted one-step
density pt−τ,t (x| y, gn(θ)). By showing equality of the two densities, we can verify
robustness. For complex models, analytical calculations may be difficult, or even
impossible. In these cases, we may resort to numerical calculations, especially when
approximate robustness is sufficient.

In many situations, we may not know gn a priori, nor have any anticipation. Or, we
may have tested robustness for a hypothesized parameter transformation but got poor
results. In these cases, we need to establish some information on possible forms of the
parameter transformation. Additionally, for complex models, numerical calculation
of the high-dimensional integral required for the n-step density (compare Eq. (3))
may become inaccurate. A solution is then to draw on the ideas of Monte Carlo
sampling. Monte Carlo methods and simulations are useful when probability densities
are difficult to compute in closed-form but can conveniently be sampled from (e.g.,
Robert and Casella 2000). In the following, we demonstrate both approaches for
analyzing movement models’ robustness.

3.1 Analytical and numerical approach

Spatially-explicit random walks can be created by merging two elements in the transi-
tion density of the model. One component is the general movement kernel kθ1(x; y),
which can be the transition density of any standard random walk, describing the prob-
ability that an individual takes a step from y to x if there were no environmental
information available. A second part of the model, given by the weighting function
wθ2(x), rates each possible step based on the location x . The transition densities of
the full model take the form

pt−τ,t (x |y, θ1, θ2) = kθ1(x; y) wθ2(x)∫
R
kθ1(z; y)wθ2(z) dz

. (14)

The integral in the denominator serves as a normalization constant.
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For simplicity, we restricted our analysis to the one-dimensional case, that is we
assumed that Xt ∈ R. We further focused on Gaussian kernels kθ1(x; y) = kσ (x; y),
where kσ (x; y) is a Gaussian density with mean y and standard deviation σ . The
weighting function wθ2(x) was assumed to be positive everywhere to ensure that
Eq. (14) defines a density. In the following we simply use θ for the parameter vector
of the weighting function, or, when it is clear which parameters refer to the weighting
function, we drop the subscript for the parameter in the notation of the weighting
function entirely.

Note that the transition density (14) does not depend on time explicitly. Still, as
the individual moves through space over time, the centre location y of the kernel
shifts. Although the kernel is a function of the distance ‖x − y‖ only, the weighting
function adds a spatially explicit component. Therefore, unless the individual remains
at the same location, the transition kernel effectively changes at every time step. In the
following, we omit the time-related subscript in the notation of the density and simply
write p1 for the transition density (14) and pn for the n-step density. The time interval
of the original process is always assumed to be τ . The distinction between one-step
and n-step density is still important, because the n-step density is in fact an integral
over multiple one-step densities; compare Eq. (3).

We investigated whether we could find weighting functions wθ (x) such that the
model with transition density (14) is robust, asymptotically robust or approximately
robust. We started by verifying Definition 1 for simple cases of the weighting func-
tion for a fixed parameter transformation gn . As highlighted above, the parameter
transformation is a key element, translating parameters between different temporal
resolutions. For the parameter of the Gaussian movement kernel kσ , we obtained a
candidate for the transformation based on the linearity of the Gaussian distribution. If
we only consider the kernel kσ , we have a simple random walk with normally distrib-
uted steps between locations. The n-step density (3) is then the density of a sum of
n normally distributed random variables, which is again normal with standard devi-
ation

√
nσ . Therefore, we assumed that the transformation of the kernel’s standard

deviation was given by gn(σ ) = √
nσ . For the parameters of the weighting function

we assumed that they remain unaffected, that is gn(θ) = θ . This is an ideal property
for a weighting function, as it guarantees validity of inference results across different
sampling rates without further translation.

In a next step, we used the same parameter transformation gn(σ, θ) = (
√
nσ, θ) to

establish conditions on the weighting function such that the model is asymptotically
robust. For this, we assumed that the parameter of the kernel, the standard deviation,
was influenced by the time interval τ , that is σ = σ(τ). This reflects that an individual
may travel larger distances during longer time intervals. Because of the linearity of the
Gaussian distribution, we assumed the relationship σ(τ) = √

τω, for some ω > 0.
For certain conditions on the weighting function, we verified Definition 2 analytically
for the robustness degree n = 2 by calculating the function v(x, y; τ) and placing
bounds on it.

As alternative to an analytical approach, we can calculate the ratio of two-step and
one-step density numerically to see whether we can find a function v(x, y; τ) accord-
ing to Definition 2 for the degree n = 2. Define δ(τ ) := maxx,y |v(x, y; τ) − 1|.
Note that since step densities depend on τ through σ(τ), we may equivalently con-
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sider δ(σ ). If this is independent of the other parameters θ , we can obtain the bound
on v as δ := maxσ δ(σ ), if this maximum exists. More generally, we can consider
v(x, y, σ, θ) and calculate δθ (σ ) := maxx,y |v(x, y; σ, θ) − 1|. This δθ (σ ) is the
magnitude of approximate robustness (degree 2) for a model with a fixed weighting
function, including parameter values. An overall magnitude for the family of models
consisting of the model for all parameter values can be obtained as δ := maxσ,θ δθ (σ ).
We demonstrate these two numerical approaches with an example weighting function.

3.2 Simulation approach

3.2.1 Resource selection models

Resource selection analyses link animal location data and environmental variables
to understand animals’ space-use patterns in relation to their habitat. These stud-
ies provide insight into species’ preferences or avoidance of habitat characteristics,
which is important information for wildlife management and conservation purposes
(Hebblewhite and Merrill 2008; Latham et al. 2011; Squires et al. 2013). Central
methodological elements are resource selection functions (RSF) and resource selec-
tion probability functions (RSPF), describing the probability of selection of certain
units (e.g. pixels of land) by an organism based on environmental covariates (Manly
et al. 2002; Boyce et al. 2002; Lele and Keim 2006). RSF and RSPF have been used
on their own in a mere statistical framework (Boyce et al. 2002; Courbin et al. 2013),
incorporated into spatially-explicit models (Rhodes et al. 2005; Aarts et al. 2011), and
become part of mechanistic movement models (Moorcroft and Barnett 2008; Potts
et al. 2014)). We refer to Lele et al. (2013) for details about the distinction of RSF and
RSPF and use RSF as a general term for both concepts, unless otherwise stated.

We include resource selection in the spatially-explicit random walk with tran-
sition density (14) by letting the weighting function take the form of an RSF,
wθ (x) = wθ (r(x)), where r(x) = (r1(x), . . . , rn(x)) is a vector of resource covari-
ates at location x . Each r j is a function over space, representing resource covariates
such as elevation, biomass measures, land cover type, and much more. The transition
density becomes

p1(x |y, σ, θ) = kσ (x; y) wθ (r(x))∫
R
kσ (z; y)wθ (r(z)) dz

. (15)

In practice, geographical information is spatially discrete, and therefore the normal-
izing integral in Eq. (15) becomes a sum over pixels, or cells, of land. Note that we
still restrict our attention to one-dimensional models.

The RSF can take various forms, and here we consider the two most commonly
used ones (Manly et al. 2002; Lele and Keim 2006), the exponential RSF,

wexp(r(x)) = exp (β · r(x)) (16)

and the logistic function,

123



1702 U. E. Schlägel, M. A. Lewis

wlog(r(x)) = exp (α + β · r(x))
1 + exp (α + β · r(x)) . (17)

Thevectorβ comprises all selection parameterswith respect to resource covariates r . A
higher selection parameter means stronger selection with respect to the corresponding
resource. In the logistic form, α is an intercept parameter, which can shift the inflection
point of the logistic function away from zero. The inflection point is the point where
the logistic function attains a value of 0.5, that is where the probability of selecting a
resource is 50%. If the exponential form (16) is used, an intercept similarly to the one
used in Eq. (17) is not identifiable, because it cancels in the definition of the transition
density (15). Therefore we have omitted it in Eq. (16). The function wlog has range
(0, 1) and can therefore be used to describe probabilities. This means that this form
can be used as RSPF, which for a given location y specifies the probability that an
animal selects this location, given the covariate values of the location. In contrast,
the exponential RSF can only specify values proportional to this probability, with
unknown proportionality constant (Lele et al. 2013).

3.2.2 Sampling models and sub-models

We examined the two models with weighting functions wexp and wlog for their
robustness. Because the weighting functions depend on space through environmen-
tal information r they are highly non-linear, and therefore the transition densities
are difficult to examine analytically. Sampling probability distributions is a conve-
nient workaround and has the additional advantage that we can control parameters
and isolate processes of interest. We thus simulated sample trajectories from the
model with transition densities (15). The joint density of a movement trajectory
(x1, . . . , xN ) ∈ R

N of length N ∈ N is given by

pjoint(x1, . . . , xN , θ) = p1(x1, θ)

N∏
t=2

p1(xt |xt−1, θ). (18)

Thus, we sampled successively from the transition densities to obtain a full movement
trajectory. We obtained samples from the subprocess xn = (x1, xn+1, . . . ) consisting
of every nth location by subsampling the full trajectories. These subsamples represent
samples from the model with transition densities being the n-step densities pn(·|·, θ).

Because the models rely on environmental data, we simulated resource landscapes
as realizations of Gaussian random fields with exponential covariance model (Haran
2011; Schlather et al. 2014). This resulted in spatially correlated resource landscapes,
thus ensuring realism; compare Fig. 1 in Online Resource 1. The sampled movement
trajectories were based on these simulated landscapes. To avoid confounding effects
and to keep results as clear as possible, we assumed that the weighting function was
based on only one resource r , thus we havewθ (r(x)). With the exponential covariance
model, we assumed that the covariance of resource values at two different locations
is given by

Cov(r(x), r(y)) = exp

( |x − y|
s

)
, (19)
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where s affects the decrease of the spatial autocorrelation with increasing distance.
We sampled trajectories for varying parameter values. We used σ ∈ {5, 6, 7} and

β ∈ {0.5, 1, 1.5, 2} in all combinations. In the model with logistic RSF wlog, we
further combined the values α ∈ {−1,−0.5, 0, 0.5, 1} with all other parameters. For
each parameter combination, we sampled 16 trajectories for 15,000 time steps each;
compare Figs. 2, 3 in Online Resource 1. For each of the 16 trajectories, we used
a different resource landscape, repeating the same set of resource landscapes across
different parameter combinations. The 16 landscapes were generated with varying
spatial autocorrelation, s ranging between 200–500. This led to a total of 192 sampled
trajectories for themodel with exponential RSF and 960 trajectories for themodel with
logistic RSF. We subsampled every trajectory at levels n = 1, . . . , 15, leaving 1000
steps for the coarsest time series. The subsample for n = 1 is the original trajectory.

3.2.3 Analyzing parameters

While the simulated trajectories represent samples from the originalmodel with transi-
tion densities p1(·|·, θ), the subsamples of the full trajectories provide us with samples
from the sub-models with n-step densities pn(·|·, θ). To learn about the model’s
robustness properties, we need to test whether the subsamples reconcile with the
parameter-adjusted one-step densities p1(·|·, gn(θ)) for some parameter transforma-
tion gn . For a given parameter transformation, we can achieve this by analyzing the fit
of themodel with transitions p1(·|·, gn(θ))with the subsamples.When gn is unknown,
or when the fit for a hypothesized gn is poor, we first need to investigate the behaviour
of the parameters under subsampling to see whether we can find a function gn as
required by our robustness definitions.

Here, we both tested a priori expectations on the parameter transformation and
searched for better alternatives. We estimated parameters for all trajectories and their
subsamples using maximum likelihood optimization. The likelihood function for the
full trajectories is given in Eq. (18). For subsamples, we applied the same model,
although we did not know whether subsamples of trajectories followed the same
(parameter-adjusted) process as full trajectories. We expected parameter estimates for
the full trajectories to be close to the values that we used during the simulations. We
call these the ‘true values’, although deviations in the simulations are possible, because
simulated trajectories are realizations of stochastic processes. Our main interest are
parameter estimates for the subsamples. To distinguish estimates from underlying true
parameters, we denote the estimate with a hat, e.g. σ̂ . Ideally, the parameters of the
subsamples should follow some function gn(σ, α, β), and so should the estimates.
To see whether such a function exists, we fitted non-linear regression models to the
relationship of parameter estimates of subsamples and the subsampling amount n. For
each parameter, we fitted twomodels. Onemodel wasmore restrictive and represented
a priori expectations, whereas the other model had an additional free parameter that
allowed more flexibility for the parameter transformation.

The general movement kernel k has one parameter, the standard deviation σ of the
Gaussian distribution. This kernel describes the general movement tendencies of the
animal, and σ influences the distance covered in each step. With increasing subsam-
pling, the temporal resolution of the movement path becomes coarser, and we thus
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expected the standard deviation of the kernel to increase. Each step in a subsample
is in fact the accumulated result of one or several steps in the full trajectory. If the
kernel is the only force driving themovement, the linearity of the Gaussian distribution
caused us to expect the standard deviation of the kernel to increase as

√
nσ ; compare

Sect. 3.1. With additional resource selection, however, there may be deviations from
this behaviour.

For the resource selection parametersα andβ, an ideal behaviour would be that they
remain unaffected by the subsampling, analogously to our assumptions in Sect. 3.1. In
our model, we assume that each step is influenced by the RSF. One of the underlying
assumptions of a traditional RSF is that it gives weights to locations independently
of the values of other locations, which means each location is weighted by its present
resource only,without considerationof alternative locations. Therefore, resource selec-
tion parameters should be independent of the temporal resolution of the data. However,
within the spatially-explicit movement framework, resource selection always occurs in
the context of the current location and the available surrounding area as defined by the
generalmovement kernel. Therefore, a change in themovement kernel due to increased
subsampling may be accompanied by a change in resource selection parameters.

We fitted the non-linear regression models to the parameter estimates separately for
each parameter combination. This means that in each regression, we fitted estimates of
16 trajectories and their subsamples. Because of our previous considerations about the
kernel parameter σ , we assumed a power relationship between the estimate σ̂ and the
subsampling amount n, stratified by trajectories. We chose the stratification because
trajectories were simulated on different landscapes. Also, for the resource selection
parameters, especially when their true values were close to zero, estimates could vary
between being positive and negative. In these cases, the stratification allowed for
flexibility. The model for the estimate of the nth subsample of trajectory i is

σ̂i,n = σ̂i,1 · nb + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16, (20)

where the error term ε is normally distributed with mean zero and positive standard
deviation ζ . The maximum likelihood estimate of b should ideally be close to 0.5,
however as noted above, it may deviate from this value because of resource-selection
mechanisms. To test whether b differs from 0.5, we used model selection via AIC
between the model in Eq. (20) and the model in which we fixed b = 0.5.

Model choice for the resource selection parameters was less clear. Visual inspection
of the estimates, preliminary fits with varying models and inspection of residuals
suggested a power law for the parameter β as well. We thus fitted the following
model,

β̂i,n = β̂i,1 · nb + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16. (21)

We compared the fit of this model with the model in which we assumed that subsam-
pling does not change the estimate by setting b = 0.

For the intercept parameter α in the logistic form of the resource selection function,
we chose a linear model,

α̂i,n = α̂i,1 + b (n − 1) + ε, 1 ≤ n ≤ 15, 1 ≤ i ≤ 16. (22)
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Inspection of residuals suggested that in some cases the relationship between α̂ and
n was non-linear. However, a power-law model or other non-linear relationships were
not consistently more suitable either. Therefore we remained with the simpler, the
linear, model, noting that this is a mainly illustrative analysis.

3.2.4 Calculating approximate robustness

To accompany the simulation analysis, we examined approximate robustness proper-
ties of the two models with exponential and logistic RSF. We focused on approximate
robustness of degree 2, and we tested the ideal parameter transformations g2(σ, β) =
(
√
2σ, β) and g2(σ, α, β) = (

√
2σ, α, β) for wexp and wlog, respectively. We numeri-

cally calculated amagnitude δ = maxx,y(|v(x, y)−1|) for every possible scenario that
we used in the previous section. This means that we calculated a magnitude for each
combination of the parameters σ, β, and α (in case of the logistic RSF) and for each
of the 16 simulated resource landscapes. We may therefore think of δ as δ(σ, α, β, i),
for 1 ≤ i ≤ 16; compare Fig. 2. We examined whether magnitudes were influenced
by parameter values and specific characteristics of the landscapes, such as their spa-
tial autocorrelation and their overall variation Var(r(x)) over the spatial domain. We
further calculated an overall maximum maxσ,α,β,i δ(σ, α, β, i). We compared results
between the model with exponential RSF, wexp, and logistic RSF, wlog.

4 Results

4.1 Analytical and numerical results

We found few special cases of weighting functionswθ that, together with the Gaussian
kernel kσ , resulted in a robust movement model according to Definition 1.

The simplest case was a constant weighting function. Such a weighting function
reduces Eq. (14) to the case of a homogeneous environment, where only general
movement tendencies play a role, but no environmental information. Themodel is then
a simple random walk with normally distributed steps between locations. Because of
the linearity of the normal distribution, the model is robust of degree n for all n ∈ N

for the assumed parameter transformation gn(σ ) = √
nσ ; compare also Theorem 2

for parameters a = b = 0.
A natural next step was to consider a linear weighting function. However, a linear

weighting function violates the assumption of being strictly positive everywhere. If
in Eq. (14) the current location y is the point at which w becomes zero, the normal-
ization integral vanishes. Also, Eq. (14) can become negative and thus cease to be a
valid density function. Still, we could draw on the linearity of the expectation of a
random variable to look into this further. The normalization constant in the transition
density (14) can be viewed as an expectation of the form E(w(Z)) for a normally
distributed random variable Z with mean y. Therefore, if the function w is linear, the
normalization constant reduces to w(y). Equation (14) then becomes

p1(x |y, σ, θ) = kσ (x; y)wθ (x)

wθ (y)
. (23)
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The right-hand side of the equation is positive whenever x and y are either both
negative or both positive. If movement only occurs in the domain where the weighting
function is positive the model is robust within this domain. The details of the proof
can be found in Appendix.

Theorem 1 (Linear weighting function) Let w be a linear function w(x) = ax + b,
for a, b ∈ R. Let I ⊂ R be the interval where w > 0. For the restricted domain I ,
the movement model with transition densities (14) is robust of degree n for all n ∈ N.
The parameter transformation is given by gn(σ, a, b) = (

√
nσ, a, b).

We found another special case to be given by an exponential weighting function.
Here, no restriction on the domain is necessary. Again, see Appendix for details of the
proof.

Theorem 2 (Exponential weighting function) Let w be an exponential function of
the form w(x) = Ceax+b for C, a, b ∈ R. Then the movement model with transition
densities (14) is robust of degree n for all n ∈ N with parameter transformation
gn(σ,C, a, b) = (

√
nσ,C, a, b).

The above two Theorems show that it is possible to verify exact robustness with the
ideal parameter transformation gn(σ, θ) = (

√
nσ, θ) for certain weighting functions.

However, the cases are very restrictive, and robustness will fail for many other, and
especially more complex, weighting functions.

We could additionally establish asymptotic robustness for more general conditions
on the weighting function. The main result is summarized in the following theorem.
For a detailed proof of the theorem, see Appendix.

Theorem 3 (Asymptotic robustness of degree 2) Let wθ be continuous and bounded
away from zero. Letwθ further be twice differentiable with bounded second derivative.
Then the model with transition densities (14) is asymptotically robust of degree 2 with
parameter transformation g2(σ, θ) = (

√
2σ, θ).

Thus, if the weighting function is well-behaved according to the theorem, we can
place a bound on the factor by which the one- and two-step density vary; compare
Eq. (6). This bound is of order τ , such that the discrepancy between one- and two-step
density decreases with the time interval.

Example 1 (Asymptotic robustness of degree 2) As a simple example, consider the
weighting function w(x) = sin(αx) + β for α > 0 and β > 1. The choice of
β guarantees that the weighting function is positive everywhere. The function w is
bounded between 0 < β − 1 ≤ w(x) ≤ β + 1 for all x ∈ R, and its second derivative
is bounded by |w′′(x)| = α2. Therefore, Theorem 3 holds.

The proof of Theorem3 is constructive in the sense that it provides uswith a constant
C for Eq. (6) in terms of the bounds onw andw′′. However, this constant may be rather
large and does not necessarily provide the closest bound on the function v. Therefore,
it can be informative to calculate approximate robustness numerically.
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Fig. 2 Steps for calculating the magnitude of approximate robustness of degree 2 for a given model, where
σ is the parameter of the movement kernel, and α and β are parameters of the weighting function. The
one-step density p1 can, for example, be Eq. (14) with the weighting function from Example 2, or the
resource selection model (15) with weighting function (16) or (17). When the resource selection model is
used, the flowchart shows the calculation of the magnitude for one specific resource landscape r(x). When
calculating an overall magnitude, practically we do this for a subset of the parameter space

Example 2 (Approximate robustness of degree 2)We continue the above examplewith
weighting function w(x) = sin(αx) + β for α > 0 and β > 1. We calculated the
function v(x, y; σ, α, β) from Definition 3 numerically, using different values of α

and β (Fig. 3a). From this, we obtained δα,β(σ ) (Fig. 3b), which is the magnitude of
approximate robustness (degree 2) for the model with specific weighting function (i.e.
with specific parameters); compare Fig. 2. In each case, after reaching a maximum
the function vanishes for increasing σ . Therefore it appears that we can find δα,β :=
maxσ δα,β(σ ). The wavelength of the sine curve, determined by α, and the intercept
β have different effects on the function δα,β(σ ). While α shifts the curve, β changes
the height of the peak (Fig. 3b). Therefore, it appears that δα,β is independent of α

and decreases for larger β. For the weighting function to be positive, β needs to be
larger than one. For β = 1, the function δα,β has a maximum at one. From these
considerations, we can conclude that maxα,β δα,β = 1. This is the overall magnitude
of approximate robustness (degree 2) for the family of weighting functions w(x) =
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Fig. 3 a Numerical calculation of the function v(x, y), which is the ratio of two-step density
pt−2τ,t (x |y, σ, α, β) and one-step density pt−τ,t (x |y, g2(σ, α, β)), for the weighting function w(x) =
β + sin(αx). Parameter values are σ = 1, α = 1, β = 2. The function v(x, y) varies roughly between
0.72 and 1.31. b Numerical calculation of δ(σ ) := maxx,y |v(x, y; σ) − 1| for the weighting function
w(x) = β + sin(αx) for varying values of α and β. The parameter α, which determines the wavelength
of the sine, shifts the curve δ(σ ) and varies the skewing, while retaining the height of the maximum. The
parameter β in contrast changes height of the maximum, which is the magnitude δ of the approximate
robustness

sin(αx) + β, α > 0, β > 1; compare Fig. 2. As a word of caution, we note that we
only calculated δα,β for a fixed number of parameter values and only within finite
intervals for x and y, and therefore results may be limited to these ranges.

In the region where δ(σ ) peaks, the approximation of the parameter-adjusted one-
step density p1(x |y,

√
2σ, α, β) to the actual two-step density p2(x |y, σ, α, β) is only

rough. However, for larger values of σ , and independent of α and β, the function
δα,β(σ ) seems to vanish, which means that the approximation is good and the discrep-
ancy between two- and one-step densities may be neglected. From Theorem 3, we
would have been able to conclude that δα,β(σ (τ )) is bounded by Cτ , for a constant
C > 0, for all α > 0 and β > 1. As we can see from the steep initial slope of δα,β(σ ),
especially for higher values ofα, the constantC would need to be rather large (Fig. 3b).
The calculations of approximate robustness could additionally show that the bound
on v(x, y) is in fact much smaller.

4.2 Simulation results

4.2.1 Results for parameter estimates

When analyzing parameter estimates from the simulated trajectories and their subsam-
ples, we found a difference in the behaviour of parameters between the exponential
and the logistic form of the RSF. Generally, subsampling had less effect on the value
of parameter estimates using the logistic form, and the behaviour of estimates agreed
closer with our expectations.

For both RSF, estimates σ̂ showed a good fit with the power-law model. When
we used the exponential RSF, the estimated power b ranged from 0.45 to 0.5 for
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Fig. 4 Values of σ against increasing subsampling amount n. Estimates σ̂ (gray dots) were fitted with
a power-relationship, stratified by trajectories, and separately for several combinations of true parameter
values (σ, β, and α for the model with logistic RSF). The power b was either fixed at 0.5 (ideal relationship;
upper orange lines) or flexible and estimated (lower blue lines). The noted range of b refers to variation
for different parameter combinations. Estimates and predictions are standardized by the corresponding true
value. a Model with exponential RSF. With increasing value of β, estimates σ̂ tended to increase less with
subsampling compared to the ideal relationship. b Model with logistic RSF. The fitted power-relationship
was very close to the ideal relationship, such that lines indicating the ideal relationship are overlaid by lines
showing the fitted relationship

varying parameter combinations, thus deviating from expected behaviour for some
parameter combinations (Fig. 4a). For small selection parameter β, the estimate σ̂

showed the expected increase as σ̂
√
n. With increasingly strong selection, i.e. higher

value ofβ, estimates σ̂ became smallerwith increased subsampling relative to the ideal
relationship. An increase in σ did not influence the fit other than leading to a larger
residual standard error ζ̂ , which is to be expected because of the overall larger values of
the dependant variable. In contrast, when using the logistic RSF, the estimated power
b differed only very slightly from 0.5 and in some cases, the simpler model with fixed
b was preferred by model selection right away (Fig. 4b).
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Fig. 5 Simulation results for the resource selection parameter β for the model with exponential RSF (a, b)
and logistic RSF (c, d). a, c Estimates β̂ (gray dots) for increasing subsampling amount n were fitted with
a power-relationship, stratified by trajectories, and separately for several combinations of true parameter
values (σ, β, and α for the model with logistic RSF). The power b was either fixed at zero, representing
the assumption that resource-selection parameters do not change with changing temporal resolution (ideal
relationship; straight orange lines), or flexible and estimated (curved blue lines). Estimates and predictions
are standardized by the corresponding true value. In c, only estimates and predictions for α = 0, β = 1
are shown. b For the exponential RSF, the estimated power b was always above 0.1 and tended to increase
with σ . d For the logistic RSF, the estimated power b was mainly below 0.1 and tended to decrease and
concentrate more for increasing β

The behaviour of the resource-selection parameter β also differed between expo-
nential and logistic RSF. For the exponential RSF, β̂ showed a clear increase with
increased subsampling, fitted well by our power-law model (Fig. 5a). The power b
remained similar (ranging 0.105–0.124) across parameter combinations, increasing
slightly with larger σ (Fig. 5b). For the logistic RSF, estimates β̂ generally remained
closer to the original values for n = 1 (Fig. 5c, d). In most cases, model selection via
AIC preferred the power-law model to the ideal constant relationship, however, the
estimated values of the power b are small, with 53 out of 60 values being below 0.1
(total range 0–0.156, with one exceptional negative value b = −0.041). There was a
tendency of b to be smaller and more concentrated under stronger selection (Fig. 5d).
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Fig. 6 For the model with logistic RSF, values of α against increasing subsampling amount n. Estimates
were fitted with a linear relationship, stratified by trajectories, and separately for several combinations
of true parameter values (σ, β, and α for the model with logistic RSF). The slope b was either fixed at
zero, representing the assumption that resource-selection parameters do not change with changing temporal
resolution (ideal relationship; straight orange lines), or flexible and estimated (blue lines). Estimates and
predictions are standardized by the corresponding true value and only shown for α = 0.5. The noted range
of b refers to variation for different parameter combinations

Estimates of the intercept α in the logistic RSF showed a slight decline with
increased subsampling in most cases (Fig. 6). This decreasing trend existed no matter
whether α was positive, negative, or zero. In general, slopes of the linear fit were all
close to zero (ranging -0.047–0.058), and in a few cases the null model with b = 0 was
chosen. We found a trend in the realized intercept values in the simulated trajectories.
With stronger effect of selection (larger β), the intercept estimate α̂ of original tra-
jectories (n = 1) was stronger concentrated around the true underlying value, which
subsequently lead to a stronger concentration of estimates of subsamples (Fig. 6).

4.2.2 Results about approximate robustness

When comparing magnitudes δ(σ, α, β, i) of approximate robustness (degree 2)
between the two models with exponential and logistic RSF, we found lower mag-
nitudes for the model with logistic function wlog. Magnitudes for the model with
exponential RSF ranged between 0.067 and 1.82, whereas those for the model with
logistic RSF ranged between 0.02 and 1.19. The 5% quantile, the median and the
0.95% quantile were [0.092, 0.34, 0.97] (exponential RSF) and [0.046, 0.21, 0.64]
(logistic RSF).

We found that especially the selection parameter β had a strong influence on mag-
nitudes, higher values of β leading to higher magnitudes (Fig. 7). For the model with
exponential RSF, there was a tendency that weighting functions whose underlying
landscapes had higher variation Var(r(x)) led to smaller magnitudes (Fig. 7a). How-
ever, we did not find an effect of the parameter s that was used in the simulations to
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Fig. 7 Magnitudes of approximate robustness for the study case models with resource selection. The plots
depict δ for varying values of σ and selection parameter β (dots). Lines join values for the same landscape
i, 1 ≤ i ≤ 16. a Magnitudes for the model with exponential RSF. Values of δ tend to be lower for landscapes
with less variation Var(r(x)). b Magnitudes for the model with logistic RSF. Values of δ tend to be lower
for higher values of the additional intercept parameter α

influence the spatial autocorrelation of the landscapes. The model with logistic RSF
did not show such an effect of landscape variation. The logistic model had the addi-
tional intercept parameter α. We found that higher values of α tended to result in lower
magnitudes (Fig. 7b).

5 Discussion

We have proposed a new rigorous framework for analyzing movement models’
capacities to compensate for varying temporal discretization of data. Our framework
comprises three definitions of varying strength for robustness of discrete-time move-
mentmodels. Generally, if amodel is robust, it can overcome problems ofmismatching
temporal scales between different data sets or between data and biological questions.
Because our robustness is a very strong condition that holds only for very few and gen-
erally more simple models, we have introduced the additional concepts of asymptotic
and, most importantly, approximate robustness. While for many movement models it
is difficult, or even impossible, to examine the transition densities and their marginals
analytically, approximate robustness properties of a model can be calculated numer-
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ically also for analytically intractable models. Therefore, we believe that especially
approximate robustness will prove a useful new concept for movement analyses.

We have formulated our robustness definitions in terms of the transition densi-
ties of Markov models, because these models are often fitted to movement data with
likelihood-based methods of statistical inference. For the considered models, we can
obtain the likelihood function by multiplying the transition densities of subsequent
steps. If a model is robust, the transition densities keep their functional form across
varying temporal scales, and parameters are transformed via a well-defined function
gn . The likelihood function therefore remains the same but will yield different parame-
ter estimates. However, if the parameter transformation is known, estimates from one
scale can be translated to estimates at other scales. If a model is only approximately
robust, the likelihood function will not remain exactly but at least approximately the
same under a change of scale. Depending on the magnitude of the approximate robust-
ness, the approximation of the likelihood function may be sufficiently good to allow
parameter estimates to be reasonably comparable for different scales, especially if the
difference in scales is small.

5.1 Relationship of the framework to statistical robustness

Our concept of robustness for discrete-time movement models is related to the formal
concept of robustness in statistics. Generally speaking, robust methods in statistics
acknowledge that models are approximations to reality and seek to protect outcomes
of statistical procedures (e.g. hypothesis testing, estimation) against deviations from
the underlying model assumptions. Classic examples are the arithmetic mean and
median as estimates of a population mean: while the median is robust against outliers
themean is not (e.g. Hampel 1986). Often, robustness is viewed in the context of devia-
tions from assumed probability distributions (distributional robustness; e.g. Huber and
Ronchetti 2009). For example, data may be contaminated by few observations with
heavier tailed distribution than the majority of the observations. In regression analy-
ses, robustness may also relate to the homoscedasticity assumption or the functional
form of the response function (Wiens 2000; Wilcox 2012). Additionally, robustness
has been considered when the assumption of independence is violated and instead
observations are correlated (Hampel 1986; Wiens and Zhou 1996). In our paper, we
consider robustness in the context of discrete-time movement models with respect to
assumptions about the temporal discretization. In view of statistical robustness, we
study violations against the assumption that the temporal resolution of our movement
model, a stochastic process, matches the resolution of the data, when in fact the data
is only a subsample of the assumed process.

There is also a difference between our robustness of movement models and the
well-established robustness in statistics. In our framework, robustness is a direct prop-
erty of a model. In contrast, classical robustness in statistics is defined for objects
such as estimators, test-statistics, or more generally, functionals (real-valued functions
of distributions) (Hampel 1971, 1986). For the type of models we have considered
here, parameter estimates cannot be obtained analytically but through numerical opti-
mization of the likelihood function. The likelihood function is build by the model’s
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transition densities, and thus we have defined robustness at a very basic level. A pos-
sibility for future research is to investigate whether some of the formal concepts of
statistical robustness can be applied to our framework to add further insight. With our
paper, we provide a new perspective for studying effects of temporal discretization of
movement processes, and we hope to encourage further research.

5.2 Discussion of analytical results

Our analytical investigations indicate that robustness is a rare property among move-
ment models, especially when behavioural mechanisms such as resource selection
are added. Therefore, if we apply models to data without considering this issue, we
are in danger of misinterpreting results and drawing erroneous conclusions. However,
our analysis also shows positive prospects with respect to approximate robustness.
Theorem 1 suggests that in slowly varying environments that produce locally lin-
ear weighting functions we may find some robustness. Theorem 3 and the following
examples show that certain smoothness and boundedness conditions on the weighting
function can lead to approximate robustness. In addition, Example 2 further demon-
strates that approximate robustness can be investigated numerically on a case-by-case
basis. We have illustrated this with a smooth weighting function w(x) that is a direct
function of space. In data applications, an animal’s preferences for locations usually
do not depend on space per se but rather through the type of habitat and available
resources, and the weighting function will be less regular. In our simulation study, we
have therefore presented a case with a more realistic model.

5.3 Discussion of resource selection simulation study

While it is difficult to analyze the transition densities and resulting n-step densi-
ties with analytical calculations, we have demonstrated with the simulation approach
how we can still investigate robustness properties of complex models. Sampling from
probability distributions instead of calculating them is the key idea of Monte Carlo
methods. We have used this method to examine sub-models that have the n-step densi-
ties as transition densities.With this we obtained the parameter transformation gn . Our
approach differs from previous studies that have used subsamples of fine-scale data to
establish an empirical relationship between sampling interval and movement charac-
teristics (Pépin et al. 2004; Ryan et al. 2004; Rowcliffe et al. 2012). When using data,
it can be difficult to tease apart effects that result from the methodology and effects
of actual behavioural changes at different scales. Analyzing model properties as we
have proposed here allows us to identify those effects of temporal discretization that
are attributable to the methodology.

In our demonstration of the simulation approach, we analyzed spatially-explicit
resource selection models. These models have an advantage over traditional resource-
selection and step-selection functions. In the traditional, regression-type approach,
observed movement steps are compared to potential steps that are obtained separately
from an empirical movement kernel (Fortin et al. 2005; Forester et al. 2009). In this
approach, movement and resource-selection are treated independently, although it is
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highly likely that both influence each other. In contrast, when fitting the full random
walk with resource selection to data by using the likelihood function (18), we can
simultaneously estimate parameters both of the general movement kernel and the
weighting function, that is the RSF.

In our analysis of the resource-selection model, we observed systematic trends
in values of parameter estimates with changing temporal discretization of movement
trajectories. Themain purposewas not to analyze these relationships in full detail but to
illustrate that they occur and thus must not be neglected. Comparing the exponential
and logistic form of the spatially-explicit resource selection model, we found that
estimates varied more with increased subsampling when the exponential RSF was
used, compared to the logistic RSF. Using the exponential RSF, estimates of the kernel
standard deviation σ decreased with increased subsampling compared to the ideal
relationship

√
nσ . On the other hand, using the logistic RSF, σ followed the ideal

relationship that would occur for a purely Gaussian process very closely, even under
additional influence of resource selection. The estimated strength of resource selection,
indicated by β, increased with the subsampling amount.While this effect was strongly
pronounced for the model with exponential RSF, it was only weak for the logistic RSF.
Therefore, if using the logistic RSF, one may expect to obtain similar inference results
across varying temporal discretization.

When we calculated the magnitudes of approximate robustness for the models used
in the simulations, we found that those were in line with the results for the parameter
estimates. Overall, the model with logistic RSF had better robustness properties than
the model with exponential RSF. We also found a matching trend for the movement
parameter σ with varying true values of β. Estimates of σ were closer to the expected
behaviour for weaker resource-selection parameters. This was also reflected in mag-
nitudes of approximate robustness. If selection was weaker in the original model,
the model exhibited better robustness properties. These results suggest that numerical
calculations of approximate robustness can assist our expectations about changes in
parameter estimates. On the other hand, although parameter estimates of the weight-
ing function showed a clear difference in behaviour when comparing between the
exponential and logistic RSF, differences within one model between different para-
meter combinations were less clear.More analyses would be required to entanglemore
detailed effects.

Overall, the results from the simulations suggest that depending on the resolution
of movement data, we may misinterpret animals’ movement tendencies and also may
overestimate resource selection effects. It is therefore important that we are aware of
the changes to statistical inference that can arise merely from the methodology. Here,
we have seen that changes in inference results were stronger for the resource selection
modelwith exponential RSF compared to the logistic RSF.A possible explanationmay
be the additional intercept in the logistic RSF. With increased subsampling, estimates
of α tended to decrease, possibly counteracting the increase in estimates β̂. This
could have led to more stability for the parameter σ of the general movement kernel.
However, this may not explain why resource selection parameters generally varied less
themselves compared to the exponential RSF. Another possibility is that the different
form of the RSFs causes their different behaviour. While the exponential form of the
RSF greatly enhances differences in landscape values, the logistic RSF is restricted to
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values in the interval (0, 1). Theorem 3 suggests that variation in the rate of change
of the weighting function influences robustness properties. Thus the logistic RSF may
produce more stable inference results for varying temporal resolutions. Lele and Keim
(2006) suggested several alternatives to the exponential RSF. Our study case showed
that the choice of resource selection functions can have implications for statistical
inference and we encourage to choose resource selection functions more deliberately.

5.4 Concluding remarks

With our study we have illustrated that the concept of robustness and its parameter
transformation gn can help to bridge the gap between different temporal resolutions of
data. For example, in the resource-selectionmodelwith exponentialRSF,we found that
with increased subsampling estimates of the resource selection parameter β deviated
strongly from the original values, however, the increase in β̂ could be fitted with a
power-relationship. Thus, using the idea of Monte Carlo sampling, we were able to
obtain a parameter transformation gn that links parameter values between different
temporal resolutions. Using such transformations when comparing results obtained
from data with different temporal resolutions could greatly improve our statistical
inference, leading to a better understanding of movement behaviour.

At the same time, we reiterate that robustness of movement models cannot replace
careful design of movement studies and data collection. To obtain reliable results,
it is crucial to acquire movement data with a resolution that is fine enough to hold
information about the behavioural process of interest. Our robustness concept can then
be used to mitigate between different resolutions within this temporal scale of inter-
est. Additionally, robustness considerations should not trump biologically meaningful
model properties. For example, in many situations a scale-free random walk may not
be a suitable model (James et al. 2011; Pyke 2015) although it is robust (Schlägel
and Lewis 2016). We therefore emphasize the importance of careful model choice
while adding the framework of movement model robustness as a new tool to evaluate
models’ sensitivity to temporal discretization. With our study, we hope to deepen our
insight into the problem and to encourage further research.
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Appendix 1: Proofs of results about exact robustness

Proof (Theorem 1) First, note that for any standard deviation of the kernel, σ , the
integral

∫
R
kσ (y; x)w(y) dy reduces to theweighting function evaluated at the kernel’s

mean,
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∫
R

kσ (y; x)w(y) dy=
∫
R

kσ (y; x)(ay + b) dy=
∫
R

kσ (y; x)(a(y − x + x) + b) dy

= (ax + b)
∫
R

kσ (y; x) dy + a
∫
R

kσ (y; x)(y − x) dy = ax + b = w(x), (24)

because kσ (·|y) is a Gaussian density integrating to 1 and with vanishing first central
moment. If we considerw as a linear transformation of a Normally distributed random
variable with mean x , then Eq. (24) reflects a special case of Jensen’s inequality, in
which equality holds.

We now show robustness of degree n with parameter transformation gn(σ, a, b) =
(
√
nσ, a, b) by induction. For n = 1, we have the trivial transformation g1(σ, a, b) =

(σ, a, b), and there is nothing to show for robustness of degree 1.
We assume that robustness or degree n holds, that is we have the relationship

pn(xn|x0, σ, a, b) = p1(xn|x0,√nσ, a, b). (25)

for all xn, x0 ∈ R. For n+1, we use the Chapman–Kolmogorov equation and Markov
property and obtain

pn+1(xn+1|x0, σ, a, b) =
∫
Rn

n+1∏
k=1

p1(xk |xk−1, σ, a, b) dx1 . . . dxn

=
∫
R

p1(xn+1|xn, σ, a, b)

(∫
Rn−1

n∏
k=1

p1(xk |xk−1, σ, a, b) dx1 . . . dxn−1

)
dxn

=
∫
R

p1(xn+1|xn, σ, a, b) pn(xn|x0, σ, a, b) dxn

=
∫
R

p1(xn+1|xn, σ, a, b) p1(xn|x0,
√
nσ, a, b) dxn, (26)

where the last step follows by induction. We can now insert the model’s step proba-
bilities and use Eq. (24) to further calculate,

pn+1(xn+1|x0, σ, a, b) =
∫
R

kσ (xn+1; xn) w(xn+1)∫
R
kσ (y; xn)w(y) dy

k√
n σ (xn; x0) w(xn)∫

R
k√

n σ (y; x0)w(y) dy
dxn

=
∫
R

kσ (xn+1; xn) w(xn+1)

w(xn)

k√
n σ (xn; x0) w(xn)

w(x0)
dxn

= w(xn+1)

w(x0)

∫
R

kσ (xn+1; xn) k√
nσ (xn; x0) dz. (27)

Note that we have assumed that all movement steps are within the domain I , where
the weighting function is positive. Since kσ (xn+1; xn) = kσ (xn+1−xn; 0), the integral
in the last expression is the convolution of two Gaussian densities with variances σ 2

and nσ 2 and with means 0 and x0, respectively. Because of the linearity of Gaussian
randomvariables, this is again aGaussian densitywithmean x0 and variance (n+1)σ 2.
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Because Eq. (24) holds for the kernel with any standard deviation, we can rewrite the
denominator as w(x0) = ∫

R
k√

n+1 σ (y; x0)w(y) dy. Thus,

pn+1(xn+1|x0, σ, a, b) = k√
n+1 σ (xn+1; x0)w(xn+1)∫

R
k√

n+1 σ (y; x0)w(y) dy
=p1(xn+1|x0,

√
n + 1 σ, a, b).

(28)

�

Proof (Theorem 2) We proceed analogously to the previous proof. The integral of
weighting function and kernel with arbitrary standard deviation σ and mean x is here
given by

∫
R

kσ (y; x) w(y) dy =
∫
R

kσ (y; x)Ceay+b dy

= C√
2πσ

∫
R

exp

(
− (y − x)2

2σ 2 + ay + b

)
dy.

By completing the square and using substitution u = 1√
2σ

(y − x − aσ 2) we obtain

∫
R

kσ (y; x) w(y) dy = C√
2πσ

e
a2σ2
2 +ax+b

∫
R

exp

(
−

(
y − x − aσ 2

√
2σ

)2
)
dy

= C√
2πσ

e
a2σ2
2 +ax+b

∫
R

exp
(
−u2

) √
2σ du.

The final integral reduces to
√
2πσ , and therefore,

∫
R

kσ (y; x) w(y) dy = C e
a2σ2
2 +ax+b. (29)

Again, we prove robustness of degree n by induction, using parameter transforma-
tion gn(σ,C, a, b) = (

√
nσ,C, a, b). In the induction step, we obtain, with help of

Eq. (29),

pn+1(xn+1|x0, σ, a, b) =
∫
R

kσ (xn+1; xn)Ceaxn+1+b∫
R
kσ (y; xn)Ceay+b dy

k√
n σ (xn; x0)Ceaxn+b

∫
R
k√

n σ (y; x0)Ceay+b dy
dxn

=
∫
R

kσ (xn+1; xn)Ceaxn+1+b

Ce
a2σ2
2 +axn+b

k√
n σ (xn; x0)Ceaxn+b

Ce
na2σ2

2 +ax0+b
dxn

= exn+1

e
(n+1)a2σ2

2 +ax0

∫
R

kσ (xn+1; xn) k√
n σ (xn; x0) dz

= exn+1

e
(n+1)a2σ2

2 +ax0
k√

n+1 σ (xn+1; x0).
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= k√
n+1 σ (xn+1; x0)Ceaxn+1+b

∫
R
k√

n+1 σ (y; x0)Ceay+b dy

= p1(xn+1|x0,
√
n + 1 σ, a, b) (30)


�
Appendix 2: Proof of result about asymptotic robustness

To highlight the main steps necessary to prove Theorem 3, we establish a series of
intermediate results. As a first step, we show that the 2-step transition density can be
broken up into a product of the form (5) in Definition 2.

Proposition 1 The 2-step transition density of model with transitions (14) can be
written as

p2(xt |xt−2τ , σ, θ) = p1(xt |xt−2τ ,
√
2σ, θ) · v(xt , xt−2τ ; τ), (31)

where the function v is given by

v(xt , xt−2τ ; τ) =
∫
R
k√

2σ (y; x)wθ (y) dy∫
R
kσ (y; x)wθ (y) dy

∫
R

k σ√
2

(
z; 1

2
(xt + xt−2τ )

)

× wθ (z)∫
R
kσ (y; z)wθ (y) dy

dz. (32)

Note that v depends on τ through σ . For later convenience, we define

Q(x; τ) :=
∫
R
k√

2σ (y; x)wθ (y) dy∫
R
kσ (y; x)wθ (y) dy

(33)

I (x1, x2; τ) :=
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) wθ (z)∫
R
kσ (y; z)wθ (y) dy

dz. (34)

Proof The proposition can be shown with a straightforward calculation. The 2-step
transition density is given by

p2(xt |xt−2τ , σ, θ) (35)

=
∫
R

kσ (xt ; z) wθ (xt )∫
R
kσ (y; z)wθ (y) dy

kσ (z; xt−2τ ) wθ (z)∫
R
kσ (y; xt−2τ )wθ (y) dy

dz (36)

= wθ (xt )∫
R
kσ (y; xt−2τ )wθ (y) dy

∫
R

kσ (xt ; z) kσ (z; xt−2τ )

× wθ (z)∫
R
kσ (y; z)wθ (y) dy

dz. (37)
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The product of the two Gaussian densities in the integrand can be transformed as
follows

kσ (xt ; z) kσ (z; xt−2τ ) = k√
2σ (xt ; xt−2τ ) k σ√

2

(
z; 1

2
(xt + xt−2τ )

)
. (38)

The two-step density therefore becomes

p2(xt |xt−2τ , σ, θ)

= k√
2σ (xt ; xt−2τ ) wθ (xt )∫

R
kσ (y; xt−2τ )wθ (y) dy

∫
R

k σ√
2

(
z; 1

2
(xt + xt−2τ )

)

× wθ (z)∫
R
kσ (y; z)wθ (y) dy

dz. (39)

The numerator of the first factor is the desired one-step density up to appropriate
normalization. If we extend by the required normalization constant

∫
R
k√

2σ (y; xt−2τ )

wθ (y) dy, we obtain Eqs. (31) and (32). 
�
Weare now left to show that the function v−1 is in the order of τ on its entire domain

R
2 ×R

+. In particular, this means that for any fixed τ ∗, the function v(x1, x2; τ ∗)−1
is bounded on R

2 via cτ ∗ for a constant c. It turns out to be helpful to analyze v

separately onR2 × (0, τ0) andR2 ×[τ0,∞) for some τ0. Because the proof is simpler
for large τ , we present this result first.

Lemma 1 Letw be continuous and bounded away from zero, that is there exist L and
U such that 0 < L ≤ wθ (x) ≤ U for all x ∈ R. Let w further be twice differentiable
on R with |w′′(x)| < M for some M and all x ∈ R. For any τ0 > 0, we have
v(x1, x2, ; τ) − 1 = O(τ ) on R

2 × [τ0,∞).

Proof Let τ0 be a number away from zero and fixed. Our goal is to establish bounds
on the functions Q and I , as defined in (33) and (34), and to use these to place a bound
on v − 1. Because w is twice differentiable we can apply Taylor’s theorem to obtain
a linear approximation for w using any point x ∈ R,

wθ (y) = wθ (x) + w′(x)(y − x) + R(y), (40)

where R(y) is the remainder term. This leads to

∫
R

kσ (y; x) wθ (y) dy = wθ (x)
∫
R

kσ (y; x) dy + w′(x)
∫
R

kσ (y; x) (y − x) dy

+
∫
R

kσ (y; x) R(y) dy, (41)

where the first term on the RHS becomeswθ (x), because the kernel integrates to 1, and
the integral in the second term is the first central moment of the kernel, hence vanishes.
The remainder R(y), using the Lagrange form, is given by R(y) = w′′(ξ)

2 (y− x)2, for
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some ξ between x2 and y. Since the second derivative of w is assumed to be globally
bounded, we have |R(y)| ≤ M

2 (y − x)2. We use this to place bounds on the third
term, recognizing that the remaining integral

∫
R
kσ (y; x) (y − x)2 dy is the second

central moment of the Gaussian kernel kσ , which is given by its variance σ 2 = ω2τ .
Therefore,

wθ (x) − M

2
ω2τ ≤

∫
R

kσ (y; x) wθ (y) dy ≤ wθ (x) + M

2
ω2τ. (42)

In general, the lower bound can be arbitrarily close to zero, therefore we cannot simply
invert this inequality to obtain an estimate on the inverse of the integral. Instead, we
use the bounds on w and again the fact

∫
R
kσ (y; x) dy = 1 for any σ and any x ∈ R

to establish

0 < L ≤
∫
R

kσ (y; x) wθ (y) dy ≤ U, (43)

which can be inverted. Since inequalities (42) and (43) hold for any σ and any x ∈ R,
they allow us to place bounds on both Q and I . For Q, we obtain

1

U

(
wθ (x) − Mω2τ

) ≤ Q(x; τ) ≤ 1

L

(
wθ (x) + Mω2τ

)
(44)

for all x ∈ R, τ ∈ R
+. We can avoid the dependency of the bounds on x by again

invoking the bounds on w,

1

U

(
L − Mω2τ

) ≤ Q(x) ≤ 1

L

(
U + Mω2τ

)
. (45)

For the function I , we only make use of the bounds on w and inequality (43) and get

0 <
L

U
≤ I (x1, x2; τ) ≤ U

L
(46)

for all x1, x2 ∈ R, τ ∈ R
+. We can now continue to calculate v − 1. An upper bound

is immediately given by

v(x1, x2; τ) − 1 = Q(x1; τ) I (x1, x2; τ) − 1 ≤ U 2 − L2

L2 + MU

L2 ω2τ. (47)

With only few more additional steps, we obtain a lower bound by simply drawing
upon L ≤ U , its squared version and its inverse,

− (
v(x1, x2; τ) − 1

) ≤ U 2 − L2

U 2 + ML

U 2 ω2τ ≤ U 2 − L2

L2 + MU

L2 ω2τ. (48)
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Define C := U2−L2

L2τ0
+ MU

L2 ω2 for the τ0 chosen up front. Then,

|v(x1, x2; τ) − 1| ≤ U 2 − L2

L2 + MU

L2 ω2τ − Cτ + Cτ (49)

= U 2 − L2

L2 − U 2 − L2

L2τ0
τ + Cτ (50)

=
(
1 − τ

τ0

)
U 2 − L2

L2 + Cτ. (51)

The product on the RHS is non-positive for τ ≥ τ0, and hence |v(x1, x2; τ)−1| ≤ Cτ

for all R2 × [τ0,∞). 
�
The bounds on Q and I , and thus v − 1, established in the preceding proof are

not sufficient to conclude the result as τ → 0, unless L = U , which is the trivial
case of a constant weighting function. More suitable bounds, however, can be found
if inequality (42) can be inverted. This can be achieved by assuming τ to be small
enough.

Lemma 2 Let w be continuous and bounded away from zero, that is there exist L
and U such that 0 < L ≤ wθ (x) ≤ U for all x ∈ R. Let w further be twice
differentiable on R with |w′′(x)| < M for some M and all x ∈ R. Let τ0 = 2L

Mω2 .

Then v(x1, x2, ; τ) − 1 = O(τ ) on R2 × (0, τ0).

Proof Here we develop bounds on Q and I such that both Q − 1 and I − 1 are in the
order of τ . Let τ ≤ τ0 for τ0 as defined in the lemma. Then the lower bound of Eq.
(42) is bounded away from zero,

wθ (x)− M

2
ω2τ ≥ wθ (x)− M

2
ω2τ0 > wθ (x)− M

2
ω2 2L

Mω2 = wθ (x)−L ≥ 0. (52)

Hence we can invert the inequality (42) and obtain

wθ (x) − Mω2τ

wθ (x) + M
2 ω2τ

≤ Q(x; τ) ≤ wθ (x) + Mω2τ

wθ (x) − M
2 ω2τ

. (53)

Note that the values in the numerators and denominators differ slightly because the
variances of the kernel k in the numerator and denominator of Q differ by a factor of
2.

Since 2wθ (x) − Mω2τ ≥ 2L − Mω2τ0 > 0, we can conclude

Q(x; τ) − 1 ≤ wθ (x) + Mω2τ − wθ (x) − M
2 ω2τ

wθ (x) − M
2 ω2τ

= Mω2τ

2wθ (x) − Mω2τ
≤ Mω2τ

2L − Mω2τ0
, (54)
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for all x ∈ R and τ < τ0. Using 2wθ (x) + Mω2τ ≥ 2wθ (x) ≥ 2L , we similarly
obtain,

− (Q(x; τ) − 1) ≤ 3Mω2τ

2wθ (x) + Mω2τ
≤ 3M

2L
ω2τ (55)

for all x ∈ R and τ < τ0. If we set C1 := max
(

Mω2

2L−2ω2τ0
, 3Mω2

2L

)
, it follows that

|Q(x; τ) − 1| ≤ C1τ on R
2 × (0, τ0).

Using analogous arguments as before, we can fine an find an upper bound on I ,

I (x1, x2; τ) =
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) wθ (z)∫
R
kσ (y; z)wθ (y) dy

dz (56)

≤
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) wθ (z)

wθ (z) − M
2 ω2τ

dz (57)

=
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) wθ (z) − M
2 ω2τ + M

2 ω2τ

wθ (z) − M
2 ω2τ

dz (58)

=
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

)
dz +

∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

)

×
M
2 ω2τ

wθ (z) − M
2 ω2τ

dz (59)

≤ 1 +
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) M
2 ω2τ

L − M
2 ω2τ0

dz = 1 + Mω2τ

2L − Mω2τ0
.

(60)

A lower bound is given by

I (x1, x2; τ) ≥
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) wθ (z)

wθ (z) + M
2 ω2τ

dz (61)

= 1 −
∫
R

k σ√
2

(
z; 1

2
(x1 + x2)

) M
2 ω2τ

wθ (z) + M
2 ω2τ

dz ≥ 1 − Mω2τ

2L
.

(62)

Setting C2 := Mω2τ
2L−Mω2τ0

, we obtain |I (x1, x2; τ) − 1| ≤ C2τ on R
2 × (0, τ0).

We can now estimate v − 1 as follows,

|v(x1, x2; τ) − 1| = |Qτ Iτ − 1| ≤ |Qτ − 1| |Iτ − 1| + |Qτ − 1| + |Iτ − 1| (63)

≤ C1 C2τ
2 + (C1 + C2) τ ≤ (

C1 C2τ0 + C1 + C2
)
τ, (64)

for all x1, x2 ∈ R and all τ < τ0. 
�

Lemmata 1 and 2, together with proposition 1 prove Theorem 3.
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